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ABSTRACT 

This report provides a review and analysis of the published literature on head-mounted 
displays (HMDs).  In doing so, this report also draws heavily from the basic vision 
research literature in order to help provide insight for future design solutions for HMDs.  
In particular, we discuss several key perceptual issues that are relevant to the use of 
HMDs.  The issues discussed are: (1) brightness and contrast; (2) accommodation- 
vergence synergy; (3) field of view; (4) binocular input; and (5) head movements.  This 
review of the literature is intended to anticipate and solve perceptual issues associated 
with two particular HMD applications: (1) simulation of off-bore sight (OBS) targeting 
and (2) full field-of-view out-the-window (OTW) simulation for deployable flight 
training.  Additionally, several technology issues important to the continued development 
of HMDs are discussed.  This report concludes with a set of recommendations for the 
design and use of HMDs for OBS and OTW flight training applications. 
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REVIEW AND ANALYSIS OF HELMET-MOUNTED DISPLAYS FOR USE IN AIR FORCE 
TRAINING AND SIMULATION 

SUMMARY 
This paper provides a review and analysis of some of the visual perceptual issues related to the 

use of helmet-mounted displays (HMDs) for training and simulation applications at Air Force Research 

Laboratory, Warfighter Readiness Research Division, Mesa, AZ.  A typical HMD system is presented, 

which is composed of several parts: an image generator, a display device attached to the head or helmet, 

relay optics, a combiner if the imagery is seen as superimposed on another display screen or 

superimposed on the outside world, and a head-tracking system. 

First, although the focus of this report is perceptual issues in the use of HMDs, a brief summary 

of current technology relevant to HMDs is presented.  This summary includes a review of currently 

available visual display technology as well as some predictions for future display technology that may be 

suitable for helmet-mounted use.  A brief summary of currently available head tracking technology is also 

included.  Next, an analysis of perceptual issues related to the use of HMDs in two specific situations is 

given: (1) simulation of off-bore sighting, (OBS) and (2) simulation of out-the-window (OTW) viewing.  

For simulation of OBS, monocular HMDs may be used while the user views the OTW display of a flight 

simulator.  We consider the use of a monocular HMD to expand the capabilities of the current Mobile 

Modular Display for Advanced Research and Training (M2DART) at Air Force Research Laboratory 

(AFRL), Mesa, AZ to include features similar to that of the Joint Helmet Mounted Cueing System 

(JHMCS) currently being fielded in various airframes (F-15, F-16, and F-18).  In this HMD application, 

where only monochrome symbology is displayed, the technology demands are fewer compared to the 

OTW HMD.  A monochrome image source with a relatively narrow field of view would be suitable. 

Binocular, wide field of view HMDs provide one approach for simulating OTW imagery, 

particularly in deployable training applications.  A high-resolution display having a field of view greater 

than 100 degrees is required.  Furthermore, motion artifacts in the display need to be minimized as much 

as possible.  Additional requirements include: interocular differences in luminance no greater than 25%, a 

rotational difference no greater than 3.4 arcmin, horizontal or vertical differences in image size no greater 

than 1.5%, vertical misalignment less than 5 arcminutes, and horizontal misalignment less than 8.6 

arcminutes.  The update lag between head movements and update of display imagery needs to be less than 

16.7 msec.  A table summarizing these findings is located on pages 38 and 39.  

Based on the review of previous HMD research issues and a survey of current technology, 

recommendations for future research projects are also given:  
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(1) Depth of Focus.  In simulating OBS using a monocular HMD worn in a flight simulator, the 

plane of focus of the symbology on the HMD should match the viewing distance to the display screen of 

the simulator so that all images are in focus.  This will not be an issue for dome-type display systems 

assuming the focal length of the HMD imagery has been adjusted to match the radius of the dome.  

However, for faceted display systems such as the AFRL M2DART, Boeing VIDS III, Link Simulation 

and Training Simusphere, and Glass Mountain Optics WASP displays, the distance from the viewer to the 

display surface varies with direction of gaze.  The rear-projected imagery and HMD imagery will 

therefore be at differing depths and the observer may not be able to maintain focus on each image 

simultaneously.  The results of a study conducted at AFRL, Mesa to evaluate whether differing focal 

distances will hinder the feasibility of simulating OBS using a monocular HMD in the M2DART are 

summarized on page 16.   

(2) Accommodation-Vergence Mismatch.  When simulating off-bore sighting with a monocular 

HMD worn in a flight simulator, or simulating OTW viewing with a binocular HMD, the stimulus to 

accommodation will be the imagery of the HMD and/or display screen of the simulator.  However, when 

the user changes his or her vergence angle to binocularly view a virtual target in the synthetic scene, the 

vergence angle can be mismatched relative to accommodative demand.  There are three potential effects 

of accommodation-vergence mismatch: (1) eye strain or visual discomfort; (2) blurring of imagery 

(depending upon display brightness and contrast); and (3) misperceived size, depth, speed, and/or 

distance via the operation of perceptual constancy. 

(3) Binocular Rivalry.  In simulating off-bore sighting, one eye views the reticle and both eyes 

view the OTW imagery.  In this case, the existence of interocular differences in stimulus characteristics 

has the potential to produce binocular rivalry.  In viewing OTW imagery with a binocular HMD, both 

eyes will view the out-the-window scene of an ongoing mission.  Off-bore sighting can be also be 

simulated using a binocular HMD by presenting the appropriate symbology to one eye (or both) in 

addition to the OTW imagery.  In this case, the existence of small, unintended interocular differences in 

stimulus characteristics may occur due to imprecision of mounting and alignment, which may also 

produce rivalry.  Luning, which is often present in binocular displays with partial overlap, is also thought 

to be caused by rivalry.  It is therefore important to determine which stimulus parameters produce or 

minimize rivalry and whether training or practice can help mitigate such effects.   

(4) Field of View.  This is primarily an issue for simulation of OTW viewing with a binocular 

HMD.  Field of view can have a significant effect on performance of tasks relevant to pilot training.  It is 

important to determine what size field of view is required and how field of view requirements need to be 

weighed against other requirements, such as resolution and binocular overlap.  If high resolution is a 
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driving requirement, for example, field of view must necessarily be smaller.  If depth cues are important 

in a particular HMD application then full binocular overlap with binocular disparity across the field of 

view may be a requirement.  This would also necessitate a smaller field of view.  Technology 

development is needed to address this issue. 

(5) Binocular Overlap and Convergent versus Divergent Displays.  In simulating OTW viewing, 

it is important to determine the perceptual implications of using either convergent or divergent binocular 

displays.  In particular, one should determine how the convergent versus divergent systems relate to half-

occlusions, visual suppression, luning, and field of view, and whether one type of display is better than 

the other or whether a full-overlap display should be considered.   

(6) Head tracking of voluntary head movements.  In simulating out-the-window viewing, the 

display imagery must be shifted in a direction opposite to voluntary head movements to mimic an 

environment-centered frame of reference.  One potential problem is that the time required to measure the 

head movements with the head tracking system and update the display creates a temporal lag that impairs 

perception and places constraints on the gain of the head tracking system.  It is therefore important to 

investigate the relationships among head-tracking accuracy, lag, and size of head movement to determine 

an acceptable set of parameters.   

(7) Head tracking of involuntary head movements during training or rehearsal.  If, during mission 

training or rehearsal, the user employs an HMD in an environment that causes acceleration or vibration, 

the head will execute involuntary head movements, which, in turn, elicit a compensatory and opposite 

vestibulo-ocular reflex (VOR) eye movement.  The VOR eye movement impairs viewing of the HMD 

because the image moves with the head, which renders the VOR response as inappropriate.  One approach 

for correcting inappropriate VOR responses is to measure the involuntary head movements with a head 

tracker and shift the image on the HMD by the same magnitude and a direction opposite to the head 

movement (in the same direction as the eye movement).  One problem with this technique is that the head 

tracker would likely not be accurate enough to fully compensate for the small amplitude VOR response.  

It is therefore important to determine to what degree HMDs will be used for mission training and 

rehearsal in environments involving acceleration or vibration.  This could occur if mission training or 

rehearsal were conducted on an aircraft carrier or transport plane while enroute to a new mission.  

Significant vibration or acceleration would also occur if the HMD were used in conjunction with a 

moving base simulator or motion seat. 
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INTRODUCTION 
Recent demands for deployable training systems and the adoption of HMDs in fielded aircraft for 

off-bore sighting (OBS) have renewed interest in HMDs for flight training applications.  An HMD 

presents symbolic or pictorial information to a pilot or other user while allowing changes in head position.  

Current generation HMDs use miniature displays mounted on a helmet and relay optics that present 

imagery to the user's eyes (Beal & Sweetman, 1997; Velger, 1998).  These displays offer some 

advantages over traditional displays, such as increased situational awareness in augmented visibility 

situations (Velger, 1998).  HMDs would also be useful in mission training and rehearsal simulations due 

to their portability. 

If implemented properly, HMDs can offer advantages over traditional displays, such as increased 

situational awareness and ease of mobility. Thus, HMDs are increasingly being considered for use in a 

wide variety of applications, including surgery and other medical applications, remote vehicle operation, 

flight simulation, and automobile racing (Melzer & Moffitt, 1997; Velger, 1998). 

Despite the potential advantages of HMDs, their development through the years has not been 

uniform (Ruston, Mon-Williams, & Wann, 1994; Sheedy, & Bergstrom, 2002).  Although Peli (1998) 

notes that visual effects during the use of an HMD were similar to those of a desktop display, Keller and 

Colucci (1998) state that HMDs have often disappointed real world users.  While HMDs have been used 

successfully in certain applications, their use in other applications has been troublesome (Velger, 1998).  

This is due, in part, to the fact that HMDs can create significant perceptual problems not found with 

traditional displays (Melzer & Moffitt, 1997).  For example, Wenzel, Castillo and Baker (2002) found 

that aircraft maintenance workers who used a HMD for training purposes reported problems such as 

eyestrain, headache, nausea, and dizziness. Morphew, Shively, and Casey (2004) found that self-reports 

of nausea, disorientation, and oculomotor strain were greater with an HMD compared to a standard 

computer monitor for a Unmanned Aerial Vehicle control task.  Hakkinen (2004) reports similar 

problems when a monocular HMD was used when performing a text-editing task. Kooi (1996) reported 

significantly greater eyestrain with the use of HMDs compared to a standard computer monitor.  

Simulator sickness has also been reported with the use of HMDs and can be caused by a number of 

factors (Ehrlich, 1997; Draper, Virre, Furness, & Gawron, 2001; Draper, Virre, Furness, & Parker, 1997). 

In order to address these issues for improved future applications an understanding of the 

perceptual issues underlying these phenomena is necessary.  To that end, this paper provides a review and 

analysis of some of the visual perceptual issues related to the use of helmet-mounted displays in two 

situations: (1) simulation of off-bore sighting, and (2) simulation of OTW viewing.  The published 

literature on HMDs as well as basic perceptual processes is reviewed and perceptual issues identified that 
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are relevant to HMD systems currently available and likely to be commercially available in the near 

future.  A summary of currently available HMD systems suitable for use in simulation of off-bore 

targeting and OTW viewing applications is also included.  We also provide some discussion of HMD 

components, such as visual display technology, head tracking systems, and optics.  However, we are 

primarily concerned with perceptual issues that may arise with the use of HMDs in specific applications.  

For a more thorough description of HMD engineering design and technology issues see, for example, 

Velger, 1998 or Melzer and Moffit, 1997.  Finally, recommendations for future areas of research to 

investigate certain perceptual issues will be given.   

BASICS OF HMDS 
A typical HMD system is composed of several parts: an image generator, a display device 

attached to the head or helmet, relay optics, a combiner if the imagery is seen as superimposed on another 

display screen or superimposed on the outside world, and a head-tracking system (Velger, 1998).   

The HMD can be a monocular system (Figure 1); in which synthetic imagery is presented to only 

one eye of the user (the other eye sees the real world).  This situation involves one image source and one 

set of optics, therefore the HMD is relatively lightweight.  The use of monocular HMDs creates the 

potential for perceptual problems such as binocular rivalry and visual discomfort.  The HMD can also be 

a biocular system, in which the same imagery is presented to both eyes of the user (Rogers & Freeman, 

1992), or a binocular system, in which slightly different imagery (i.e., imagery with binocular parallax) is 

presented to the two eyes (Klymenko et al., 1994).  Binocular displays have the advantage of providing 

stereoscopic depth information to the user but significant disadvantages of greater complexity, alignment, 

and precision mounting issues.  They will also require the use of two separate visual channels with 

slightly different perspectives.  An example of a binocular, see-through HMD is shown in Figure 2 (left) 

as well as a binocular occluding HMD (right).   

 

Figure 1. Left, Monocular see-through (courtesy of Microvision) and right, monocular occluding 

HMD (courtesy of LiteEye). 
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Figure 2.  L3 Communications Advanced HMD (left, courtesy of L3 Communications) and Kaiser SR 

80 binocular HMD (right, courtesy of Kaiser Electro-Optics). 

An ideal HMD would have high resolution, very short imagery-update lag, and be lightweight 

with an appropriate center of mass (Velger, 1998; Wood, 1992).  For OTW simulation, a very large field 

of view and large area of binocular overlap would be desirable.  In reality, however, trade-offs exist 

among these characteristics.  Improving one characteristic will come at the expense of another 

characteristic.  For example, increasing the field of view will require larger optics and a corresponding 

increase in weight.  Center of mass will therefore also be affected.  Overcoming these limitations will 

require new technology. 

The information displayed on an HMD can be as simple as an aiming reticle or alphanumeric 

symbols or may consist of complex full-color moving imagery (Velger, 1998).  Some HMD applications 

use conformal symbology.  Conformal symbology refers to world-stabilized symbology that conforms to 

the outside world (i.e., symbology linked to an environment-centered frame of reference) such that the 

symbology changes with head position.  Conformal symbology is difficult to implement because the 

position of the head must be measured and the symbology updated quickly to mimic the shift in scene 

with changes in head position that occurs in the real world.  Temporal lags in the measurement of head 

position impair human performance and create disorientation and discomfort because lags delay the 

update of imagery relative to the head movement (Long & Wickens, 1994; Velger, 1998) and produce a 

mismatch between proprioception (sense of body position) and vision.  Such a situation exists when the 

HMD displays information that substitutes for the real-world view (Ineson, 1991; Kaye et al., 1990; 

Adam, 1994; Swenson et al., 1994), such as when simulating OTW viewing for training or mission 

rehearsal purposes.   
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TECHNOLOGY ISSUES 

Visual Displays 

Current Technology 
There are many types of visual displays that could potentially be used in helmet-mounted 

applications.  Miniature monochrome cathode ray tube (CRT) displays have generally been used with 

HMDs in the past due to a lack of viable alternatives.  CRTs do offer high luminance output, low cost, 

durability, and desirable temporal characteristics.  Significant disadvantages of CRT displays, however, 

include their relatively high weight, large size, and high power requirements. 

Other types of displays are now beginning to replace CRTs for use in HMDs.  The most 

promising visual display as a replacement for CRTs for use in HMDs is the Liquid Crystal on Silicon 

(LCoS) display.  These displays are relatively fast, have good light output, low power consumption, low 

weight and small size, high fill factor, and relatively high resolution.  LCoS chips have a greater potential 

to achieve high pixel counts and manufacturing costs are lower compared to some other technologies 

(McLaughlin, 2002).  Limitations of LCoS displays include some brightness limitation due to heating of 

the liquid crystal, color shifts over time, and limitations to contrast due to anisotropy and polarization 

coupler efficiency.  There are also some limitations to switching time due to capacitance (Pinho, 2004).  

Another potential disadvantage of LCoS displays in HMD applications is the requirement for an 

illumination source, which must be mounted in front of the LCoS panel.  This may impose some 

limitations on the configuration of the optics for a head mounted design.  Furthermore, the lamp may 

periodically need replacement.  However, the development of high output light emitting diodes (LEDs) 

alleviates these concerns to some extent.  Current chip designs also cause the LCoS pixels to be 

illuminated for an entire video frame (typically 16.7 milliseconds).  This hold-time increases the light 

output of the device, but may cause motion artifacts such as blurring or double images (see e.g., 

Winterbottom, Geri, & Pierce, 2004 and Lindholm, Pierce, & Scharine, 2001). These artifacts are clearly 

undesirable in military simulation applications, particularly fast jet simulation.  These motion artifacts can 

be predicted through analyses in the spatiotemporal domain if the properties of both the display and the 

observer are known (Watson, Ahumada, & Farrell, 1986).  An additional complication for helmet-

mounted applications, particularly OTW applications, is that the imagery must move when the head 

moves.  Movement of the head will cause significant blurring, or loss of definition, if the full 16 msec 

hold-time is maintained.  A new type of LCoS, a ferro-electric LCoS (FLCoS), which has recently been 

introduced (see for example http://www.crlopto.com/), may provide a solution to the pixel hold-time 

issue.  The new FLCoS is significantly faster than even the standard LCoS.  Provided that sufficient 

illumination is available, it is possible that the pixel hold-time on the FLCoS could be reduced sufficiently 
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(e.g., < 4 msec) to reduce motion artifacts.  Several HMD manufacturers are now using FLCoS (e.g., 

Kaiser SR80 and SR100, L3 Communications Advanced HMD, and NVIS nVisor). 

 

Figure 3.  An FLCoS display panel (Used with permission of CRL Opto Ltd.). 

Active matrix liquid crystal displays (AMLCDs) also have the advantage of low weight and small 

size and have good image quality and color.  However, they also require a lamp and typically have 

temporal characteristics that are too slow for applications involving moving imagery, such as fast jet 

simulation.  Head motion will also result in significant blurring with LCD displays.  LCDs also have a 

pixel hold time of one frame, resulting in the additional temporal issues described for the LCoS displays.  

Additional drawbacks of LCD’s include some brightness limitation due to heating of the liquid crystal, 

color shifts over time, and limitations to contrast due to anisotropy and polarization coupler efficiency.  

There are also some limitations to switching time due to capacitance (Pinho, 2004).  These are similar to 

the limitations to LCoS displays – both use liquid crystal technology.   

Electroluminescent displays (or active matrix EL displays) have high luminous efficiency and 

brightness (300-500 ft-L) as well as high contrast ratios 1:50-1:100 (Monarchie et al., 1995).  These 

devices use alternating current to excite a thin-film phosphor.  The phosphor layer is sandwiched between 

insulating layers and deposited on a glass substrate with transparent electrodes (Post, 1999).  Miniature 

devices have been manufactured for head-mounted use, but HMDs that utilize this display technology are 

not widely available.   

Virtual retinal displays (VRDs) have been developed by Microvision (http://www.mvis.com/) and 

are commercially available.  This type of display presents images to the visual system by scanning the 
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images directly onto the retina using a diode laser light source and thus eliminating the display screen.  

The potential advantages of such a system are increased resolution, contrast, brightness, and color quality, 

and decreased weight (Businessweek Online, 1999).  The bright high-resolution image source can be 

located off-helmet and its image presented to the helmet and pilot via fiber-optic image guides (Naor et 

al., 1987; Thomas et al., 1989; Velger, 1998, pp. 109).  One disadvantage of this display device for 

helmet-mounted applications is the small exit pupil.  Slippage of the helmet or large amplitude eye 

movements may cause portions of the image to disappear from view.  Resolution of current VRDs 

(800x600) are sufficient for display of symbology in monocular applications, but would need to be 

increased for binocular OTW applications with complex imagery.   

Digital Light Processing (DLP) display devices (or Digital Micro-Mirror Display or DMD) 

created by Texas Instruments (http://www.dlp.com/) could also be used in head-mounted applications.  A 

DMD display operates using tiny addressable micro-mirrors.  These mirrors pivot between two 

orientations to either reflect light out through the lens to the observer, or reflect it into an absorptive 

material.  The micro-mirrors can be switched at high rates of speed (up to several thousand times per 

second).  The rapidly moving mirrors are used to modulate brightness by varying the amount of time the 

light is displayed during the refresh period (pulse-width modulation).  DLPs have the highest brightness 

capability of all the current digital technologies and require the simplest optics.  However, the number of 

pixels that can be placed on one chip may be limited and they are currently more expensive to 

manufacture (Pinho, 2004).  Furthermore, the same temporal issues apply to DLPs as noted for the LCoS 

and LCD displays. 

As noted above, most, if not all, currently available digital displays exhibit temporal artifacts, 

which become quite evident for rapidly moving imagery.  Both the LCoS displays, and current DLPs, for 

example, are designed to display one video frame for an entire refresh period (typically 16 msec).  In 

addition, many current DLP projectors are field sequential, so multiple images of different colors may be 

displayed during the course of one frame.  Field sequential displays may exhibit color breakup – 

particularly where the pulse width modulation of each of the colors is spread throughout the entire 16.7 

msec frame.  For HMDs, where weight is a significant concern, a fast digital display (whether DLP or 

FLCoS) is likely to be single panel color sequential.  Additional development work is needed to reduce 

this and other temporal artifacts in these types of digital displays, particularly for HMDs, where head 

motion may exacerbate the problem.  These artifacts can be predicted when the temporal characteristics, 

and other properties of the display, are known (Lindholm & Scharine, 2000; Post, Nagy, Monnier, & 

Calhoun, 1998).  Post et al (1998), for example, developed an equation that can be used to predict the 
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display refresh rate necessary to reduce color breakup to below a detectable level for a given target 

luminance level, contrast, and rate of motion. 

Future Technology 
A recent development in display technology is the laser projector.  The laser projector is a proof-

of-concept display device currently under development by Evans and Sutherland Inc. (E&S) and Air 

Force Research Laboratory (AFRL).  The goal of this E&S/AFRL development effort is to develop a true 

20/20 immersive visual display for simulation and Distributed Mission Operations (DMO).  The 

technology driving the increased resolution of this display device is the Grating Light Valve (GLV) 

spatial light modulator developed at Silicon Light Machines in San Jose, CA.  The GLV is a high-speed 

linear array, parallel scan micro-electro-mechanical system (MEMS) device that is currently capable of 

scanning up to 5120 x 1024 images.  An Ultra GLV capable of scanning 5120 x 4096 pixel images is in 

development for an AFRL and Air Combat Command (ACC) Advanced Technology Demonstration 

(ATD) in 2005.  Light sources illuminating the GLV are red, green, and blue lasers.  Additional 

information on this technology can be found in Winkler and Surber (2001).  The laser projector offers 

very high resolution and excellent temporal qualities.  The current size of the laser projector is too large 

for helmet mounted applications, however further development of laser illumination technologies, 

development of a color sequential device, and improved packaging over the next several years could 

permit the eventual design of an ultra-high resolution laser display based HMD.  Similar technologies are 

under development at Kodak and the Institute of National Optics (INO). 

Another promising display technology is the flexible flat panel.  These displays are currently 

under development by a number of organizations (Crawford, 2004).  A device of this type would offer 

numerous advantages over current display devices and would remove many of the technological hurdles 

limiting factors such as weight, field of view, and resolution.  These devices would be self-illuminating 

thus avoiding the packaging limitations created by the requirement for a separate light source.  Another 

substantial advantage is that the device would flexible or moldable.  Although collimating optics would 

still be required to produce an image that appeared to be at a distance from the observer, the image source 

could be shaped for a curvature best fitting the requirements of the collimating optics.  The elimination of 

the light sources would also reduce the weight and size of the device.   

Another technology that would not require a separate light source is the organic-light-emitting-

diode (OLED) display.  These devices consist of a thin transparent layer of organic semiconductors or 

polymers, typically sealed between two substrates, usually glass or plastic.  The front electrode of an 

OLED display is transparent and the rear electrode is reflective.  Applying a voltage across the electrodes 

causes the organic layer to emit light (Post, 1999).  It therefore does not require a separate light source, 
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simplifying weight and configuration concerns.  These devices have been limited in their light output, 

response time, and resolution, but are making significant advances.  OLED displays are already beginning 

to appear in a variety of products such as cell phones and PDAs.  An OLED display of sufficiently high 

resolution, brightness, and decreased response time would be a prime candidate for use in a HMD.   

A novel approach for potentially producing a wide field of view visual display for deployable 

training applications is the helmet-mounted conjugate optical system (CODS), a retro-reflective display 

system.  This system is described in Geri, Arrington, and Miller (1999) and an initial analysis of technical 

and perceptual issues is presented.  Briefly, this system consists of a head-mounted display that projects 

an image in front of the observer via a head-mounted beam splitter.  The imagery is then reflected from a 

screen coated with retro-reflective material located at some distance from the observer.  The advantage of 

such a system is that it provides collimated imagery – that is the imagery appears to be located at some 

distance from the observer.  The optics of the system described by Geri et al (1999) are also relatively 

simple compared to a typical HMD.  A similar but lighter and more advanced display system, a helmet 

mounted projection display (HMPD), has been developed at the Optical Diagnostic and Applications 

Laboratory (ODA Lab) at the University of Central Florida.  They have also tested and developed a 

variety of materials for the required retro-reflective surface.  Additional description of this work is 

available at http://odalab.ucf.edu/. 

For an image plane located farther away than the retro-reflective screen the appearance of the 

system is described as similar to that of looking through a window.  The limitations of this system, 

however, are similar to that of currently available HMDs.  A higher resolution and wider field of view is 

needed for an acceptable deployable display system.  This requirement necessitates either a display with a 

substantially greater number of pixels or the tiling of multiple displays.  Although the optics of the device 

described by Geri et al (1999) and the ODA lab may be simpler compared to currently available HMDs, a 

larger field of view would require larger beam splitters and, if tiled displays are used, additional light 

engines. 

Optics  
The optical elements used in HMDs serve to direct images from the display to the eye.  Various 

types of optics have been developed and different types of optical designs result in varying trade-offs in 

weight, image quality, field-of-view, and light throughput.  A considerable amount of effort and expense 

goes into the design, consideration, and selection of optical components for HMDs.  The focus of this 

review, however, is on the perceptual difficulties that may be encountered during the use of HMDs in 

particular applications.  For a more detailed description of various optical designs Velger (1998), and 

Melzer and Moffit (1997) offer good descriptions.   
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Head Tracking Systems 
Most applications with HMDs will require the use of head trackers to update the position of 

imagery as the head moves.  For OBS applications, the position of symbology may need to be moved and 

the position of an aiming reticle will need to be specified for targeting purposes.  The speed and accuracy 

of position updates are therefore very important.  In OTW applications the speed and accuracy of these 

updates is even more critical because any lag in the head tracking and image update will be immediately 

obvious to the observer.   

Head-position tracking devices may measure 3 degrees of freedom or, more typically, measure 

six degrees of freedom (DOF) of head position, including three angular orientations of roll, pitch, yaw, 

and three linear positions of x, y, z (Velger, 1998, pp. 78, 143).  Measurement of 3 degrees of freedom is 

sufficient for applications where exact positioning of imagery relative to head-movement is not required.  

However, this type of system may not measure head roll – cocking the head slightly to the left or right for 

example.   

There are several types of head tracking devices.  These include magnetic (A/C or D/C), electro-

optical, acoustic, and inertial (or combinations of these).  Electromagnetic trackers, use an electro-magnet 

to create a magnetic field.  The location of a sensor, which is mounted on the helmet, can then be tracked 

as it moves through the magnetic field (Velger, 1998, pp. 147).  Electro-optical trackers operate using 

remote measurement by camera of the positions in space of LEDs mounted on the helmet (Velger, 1998, 

pp. 158; Toker & Velger, 1991).  Acoustic, or ultrasonic, trackers are based on time of flight or phase 

coherence, which measure distances between emitters and receivers to compute head position (Velger, 

1998, pp. 165; Meyer, Applewhite & Biocca, 1992).  These head trackers are commercially available 

from several sources.  Intersense Inc. (www.intersense.com) manufactures the IS-900 6-DOF acoustic-

inertial tracker, and the lesser expensive IS-300 3-DOF inertial tracker.  Polhemus (www.polhemus.com) 

manufactures the Liberty A/C electro-magnetic 6-DOF tracker, the Patriot 6-DOF A/C electro-magnetic 

tracker, and the Fastrak A/C electro-magnetic tracker.  Ascension Technology Corporation 

(www.ascension-tech.com) manufactures the LaserBird 6-DOF electro-optical tracker, Flock of Birds DC 

magnetic 6-DOF tracker, and PCI Bird DC magnetic 6-DOF tracker.   

The various types of head trackers have differing advantages and disadvantages.  Generally, the 

more expensive systems will have higher update rates and may have more sensors for improved speed 

and accuracy (for example, the Polhemus Liberty has 8 sensors and an update rate of 240 Hz, the Patriot 

is a 2 sensor 60 Hz system).  The sophistication of the motion prediction and noise filtering algorithms 

may also vary from system to system.  Frequently, a Kalman filter is used to extrapolate head position 

several milliseconds ahead of time to improve head tracking (Velger, 1998).  Additional sensors may also 
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be used for more accurate head tracking (Velger, 1998).  The electro-optical trackers have less temporal 

lag than the electromagnetic trackers.  Electro-magnetic tracking systems may also be affected by nearby 

metal objects and electromagnetic radiation (Ferrin, 1991).  However, the electro-optical trackers require 

a direct line-of-sight and large field of view (Velger, 1998, pp. 80).  Range of motion may also have some 

limitations depending on the placement of the LEDs and cameras.  The ultrasonic trackers could 

potentially have problems due to contamination by external acoustic noise (Velger, 1998, pp. 165).  The 

acoustic sensors also require very precise placement to maintain accuracy and likely require professional 

installation.  Inertial trackers have the advantage that they are self-contained and do not require a separate 

signal source or sensor; however, they will have a slower response and may also tend to drift.  Adding an 

acoustic sensor (such as with the IS-900) allows the inertial sensor drift to be corrected. 

Anderson, Vrana, Riegler, and Martin (2002) evaluated several types of head-tracking systems 

for use with the Night Vision Training System developed at AFRL, Mesa and describe the conditions 

under which one type of head-tracking system may have an advantage over another.  Inertial head 

trackers were recommended for enclosed areas where the placement of additional sensors is not possible.  

Optical head-trackers were recommended under conditions where no instruments, switches, or visual 

displays are located above the observers’ heads, and in situations where it is not required that technicians 

need to work around the observer as they will block the optical sensors tracking the observers’ head 

movements.  Magnetic trackers were recommended if operating space is minimal.  Magnetic trackers 

have an advantage over inertial because they provide orientation data (heading, pitch, roll) as well as X, 

Y, and Z coordinates.  DC trackers may work better in cases where more metal is present.  A magnetic 

map can be obtained for custom fits to the working area.  If large pieces of metal are introduced following 

installation a new magnetic map may need to be generated to maintain the accuracy of the head-tracker.  

However, Vision Systems International (VSI, San Jose, CA, http://www.vsi-hmcs.com/ - personal 

communication) has indicated that the magnetic head trackers are fairly robust and the introduction of 

relatively small metal objects does not significantly affect the accuracy of the head trackers used in 

conjunction with the Joint Helmet Mounted Cueing System (JHMCS).   

To accommodate a wide range of training tasks the following ranges of head movements should 

be measurable with a head tracking system: angular azimuth (180 deg), elevation (130 deg), and roll (120 

deg), with an accuracy of about 1-2 mrad on-bore sight and 2-6 mrad at 10 deg eccentricity, and linear 

displacements in the vertical (450mm), horizontal (400 mm), and fore/aft (540 mm) axes (Velger, 1998, 

pp. 144-145). 
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SPECIFIC HMD APPLICATIONS 

Off-Bore Sighting 
A primary application for monocular HMDs at AFRL is for simulating OBS, i.e., sighting and 

designating targets located off-axis relative to the aircraft) in a flight simulator for training purposes.  This 

will allow the Mesa Distributed Mission Operations (DMO) testbed to stay current with upgrades to 

fielded aircraft as the JHMCS is currently being tested in the F-15, F-16, and F-18.  The JHMCS allows a 

pilot to track and designate targets for off-bore missile targeting.  In short, the pilot can shoot whatever 

he/she looks at.  This capability allows the pilot to designate targets over a much wider field of view 

(limited only by the sensor capabilities of the missile targeting system).  Currently, target designation can 

only occur within the limited field of view of the head-up display (HUD).  OBS is therefore quite clearly 

a significant advantage in air-to-air engagements.  In addition to OBS capability, the JHMCS also allows 

the pilot to designate ground targets, view symbology, such as attitude, altitude, air speed, etc. that would 

normally be presented on the HUD, and obtain information regarding target locations from other aircraft 

via data link. 

 

Figure 4.  Joint Helmet Mounted Cueing System (courtesy of VSI, LLC). 

Requirements for a device such as the JHMCS for training and simulation purposes may be quite 

different from those in the real aircraft.  For example, in the aircraft, the brightness and contrast of the 

JHMCS needs to be great enough to produce imagery that is visible against a bright sky, which can be at 

levels on the order of 10,000 fL (Velger, 1998).  This is not a requirement for simulation where 

luminance levels do not typically exceed 30 fL with current CRT-based rear projection imagery.  

However, similar contrast levels between the HMD symbology and background imagery in the simulator 
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relative to the real world would be desirable.  For simulation purposes the OBS HMD would first have to 

be integrated with current visual displays used for display of OTW imagery as well as the computers used 

for sensor simulation, and aircraft orientation and motion in order to correctly model the designation of 

targets using the HMD targeting symbology and correctly update attitude, heading, and air speed 

symbology.  Any head tracking lag, bore sight errors, or other difficulties that are present in the real 

JHMCS should be duplicated for training purposes in the simulated system.  These issues may impose 

some unique engineering and integration challenges.  However, our focus here will be on the perceptual 

difficulties that may be encountered with the incorporation of this type of helmet-mounted device into a 

current visual display system, specifically the Mobile Modular Display for Advanced Research and 

Training (M2DART).   

Perceptual Issues in Monocular HMD Applications 

Depth of focus 
The M2DART is a full 360 degree field of view faceted display system used for DMO training 

and development at AFRL, Mesa (see Wight, Best, and Peppler, 1998 for a full description).  This display 

system consists of eight flat display screens, with imagery rear-projected (see Fig. 5).  Because it is a 

faceted display system, the distance from the eye-point to the display screen varies as the observer’s head 

turns.  This variation in viewing distance may create visibility problems for either the HMD imagery or 

the simulated OTW imagery because the observer may not be able to focus, or accommodate to both 

images simultaneously.  The HMD symbology, the simulated OTW imagery, or both, may be blurred.  

The extent to which blurring may occur depends on the depth of focus of the pilots or other users 

observing the HMD and rear-projected imagery.  Depth of focus refers to the range of distances in image 

space within which an image appears in sharp focus, and is specified in terms of diopters.  An analogous 

spatial interval, given in meters, is referred to as depth of field (Ogle & Schwartz, 1959).  Depth of field 

can be calculated using the formula FD /1= , where D is depth of field (meters) and F is depth of focus 

(diopters).  Objects varying in depth, such as variation in depth between the HMD and simulated OTW 

imagery, to an extent greater than a pilot or other observer’s depth of focus will cause perceived blurring.  

In the M2DART, this variation can be as much as 19 inches if the focus distance of the HMD imagery is 

set equal to that of the nearest distance between eye-point and display screen.   

A similar problem could be encountered with other faceted display systems, such as the VIDS 

available from The Boeing Corporation (http://www.boeing.com/defense-

space/aerospace/training/visual/visual.html), the Simusphere available from L3 Communications 

(http://www.link.com/products/simusphere.pdf), or the WASP available from Glass Mountain Optics 

(http://www.glassmountain.com/wasp.htm).  However, the variation in distance between image planes 
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will differ on each of these systems.  The greater the distance between the HMD image plane and the 

simulated OTW image plane, the greater the potential for perceived blurring of the imagery.  Difference 

in distance between image planes would not be an issue for a dome type display, such as that available 

from Barco (Barco Simulation Inc.), so long as the focal distance of the HMD is matched to the radius of 

the dome.   

Other factors affecting depth of focus include the brightness and contrast of both the HMD 

imagery and the rear-projected simulated OTW imagery and display resolution.  Display brightness will 

affect pupil size, which in turn will influence depth of field.  A brighter adapting luminance will decrease 

pupil size and increase depth of field, thereby decreasing the likelihood of blurring of imagery on either 

display.  For example, Ogle and Schwartz (1959) report that for each mm of increase in pupil size 

(ranging from 2.5 to 8.0 mm), depth of focus decreased by 0.12 diopters.  Conversely, a greater degree of 

resolution will lead to a smaller the depth of field (Campbell, 1957; Ogle & Schwartz, 1959).  Ogle and 

Schwartz (1959) showed that, using Snellen notation, for each step of increase in target resolution, the 

total depth of focus decreased by 0.35 diopters. 

AFRL, Mesa conducted a study to determine whether or not depth of focus may be an issue for 

simulating a JHMCS type device inside a faceted display system such as the M2DART, as well as 

establish a focal plane distance for the HMD imagery that will minimize any blurring that may be present 

(Winterbottom, Patterson, Pierce, Covas, & Winner, 2005).  The results of this study showed that depth of 

focus would not be an issue for displays with relatively low resolution.  For displays with relatively high 

resolution (e.g., 1 arcminute/pixel) and the range of distances possible in the M2DART, however, it was 

possible to exceed depth of focus, causing some noticeable blurring of imagery.  It was recommended that 

the focus distance of a monocular HMD integrated with the M2DART be set to the optical midpoint of 

the nearest and furthest viewing distances possible in the M2DART to minimize the potential for blurring 

when viewing the two displays simultaneously. 
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Figure 5.  Air Force Research Laboratory's M2DART. 

Accommodation-vergence mismatch 
When viewing a see-through monocular HMD in a flight simulator, the stimulus to 

accommodation could be either the imagery of the HMD or the display screen of the simulator.  The 

stimulus to accommodation could therefore be different than the distance to which the observer is verged.  

There are three possible effects of accommodation-vergence mismatch: (1) eye strain or visual 

discomfort; (2) blurring of HMD symbology or simulator imagery (affected by stimulus contrast and 

brightness); (3) misperceived size, depth, speed, and/or distance via the operation of perceptual 

constancy.  On this latter point, it should be noted that perceived size, depth, and speed depends upon the 

visual system scaling or re-calibrating retinal size, retinal disparity, or retinal speed for changes in 

viewing distance, which is called perceptual constancy.  To the degree to which accommodation and 

vergence provide the visual system with proprioceptive information about viewing distance, then changes 

in accommodation or vergence can affect perceived size, depth, or speed (see Patterson & Martin, 1992).   

For example, consider the perception of size.  When an observer moves closer to an object retinal 

image size increases, and in order for the observer to correctly perceive that the object's actual size did not 

vary (which is called size constancy), the visual system likely combines information about visual angle 

and viewing distance (Foley, Ribeiro-Filho, & Da Silva, 2004).  For example, Peli (1990) notes that the 

perceived size of imagery on a monocular, occluding, HMD appears to change depending on the distance 

of the surface for which the opposite eye is accommodated.  Wetzel, Pierce, and Geri (1996) varied 

viewing distance for alternately presented stimuli and asked observers to adjust the size of the comparison 

stimuli so that the two were equal.  They found that stimuli presented at a near distance were generally 
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judged to be roughly 15-20% smaller than stimuli presented at the far distance.  Measurements of 

vergence angle and accommodation taken during the observers’ judgments of the size of the stimuli 

indicated that change in vergence angle was strongly related to the change in perceived size. 

Consider also the perception of stereoscopic depth, which is the perception of depth based upon 

binocular parallax (also called binocular disparity).  When an observer moves closer to a set of objects 

that vary in depth, binocular disparity increases.  In order for an observer to correctly perceive that the 

actual depth relations among the stimuli did not vary (which is called depth constancy), the visual system 

likely combines information about binocular disparity and viewing distance (Patterson, Moe & Hewitt, 

1992; Ono & Comerford, 1977; Ritter, 1977).  An analogous phenomenon may occur with perceived 

speed.  When an observer moves closer to a laterally moving object, the speed of the object's retinal 

image increases, and in order for the observer to correctly perceive that the actual speed of the object did 

not change (which is called speed constancy), the visual system may combine information about retinal 

speed and viewing distance.  In this case, however, the existence of speed constancy is controversial.  

Some authors (Pierce & Geri, 1997; Wallach, 1939; Zohary & Sitting, 1993) have found evidence for 

speed constancy, at least under some conditions, but other authors (McKee & Welch, 1989) have not. 

Misaccommodation may in fact be a common occurrence when viewing virtual displays 

superimposed upon a real scene or a secondary displayed image.  Edgar, Pope, and Craig (1993), for 

example, reported that many observers tended to misaccommodate when viewing virtual displays 

superimposed upon a real scene.  In this case, the virtual imagery consisted of text lettering projected 

monocularly in front of the observer via a beam splitter (a condition similar to that which may occur with 

monocular OBS).  Observers’ accommodative state was measured using a laser optometer as they viewed 

a distant building through a window.  Accommodative state was measured while observer viewed only 

the building through the window, and when both the text and building were viewed.  The results indicated 

that observers’ accommodative state tended to drift towards the resting state, away from infinity focus, 

when both the text and building were viewed.  Edgar, Pope, and Craig also go on to comment that such 

misaccommodation may lead to misperceived size and distance. 

In summary, with monocular HMDs there is clearly a potential for a mismatch between 

accommodative demand and vergence.  The most likely symptom of this mismatch is eyestrain or visual 

discomfort.  Misperceived size, distance, or speed may also occur.  These effects could have some 

training effectiveness implications so it is important to determine whether these conditions occur when a 

monocular HMD is integrated with another display system for training applications.  Minimizing the 

difference in distance between HMD focus distance and the OTW imagery plane may minimize the 

potential for this mismatch.   
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Binocular rivalry 
With see-through monocular HMDs, synthetic symbology is presented to one eye of the user via 

the HMD, and the other eye views a synthetic or real-world scene, thus interocular differences may be 

created in brightness, contrast, color, flicker, shape, and accommodative demand (Velger, 1998, pp. 25).  

When the two eyes view different images, a condition known as binocular rivalry may ensue.  Binocular 

rivalry is generally defined as a state of competition between the eyes such that one eye inhibits the visual 

processing of the partner eye.  The visibility of the images delivered to the two eyes fluctuates during 

rivalry and the images projected to the two eyes rarely are visible at the same time.   

Hakkinen (2003) states that monocular HMD displays produce a common problem of rivalry and 

perceptual instability and should be used only briefly (1-5 minutes).  However, this finding is for 

occluding monocular displays, where each eye is viewing completely different imagery.  Peli (1990) also 

documented the occurrence of binocular rivalry for an early version of a monocular occluding HMD.  

Hershberger and Guerin (1975) documented the occurrence of rivalry during the use of a monocular 

HMD with low transparency (10%).  The results of their study suggested that ambient scene complexity, 

HMD resolution, HMD luminance, HMD accommodation distance, and ambient scene luminance were 

significant factors contributing to the occurrence of rivalry. 

For applications where the monocular HMD is see-through with a high degree of transparency 

however, it is unclear at this point whether binocular rivalry occurs to a significant extent.  This is the 

case for the JHMCS, where the left eye views the OTW scene (whether real or simulated) while the right 

eye views both the HMD imagery and the OTW scene combined.  This is also the case for the Integrated 

Helmet and Display Sighting System (IHADSS), which has been used in the AH-64 Apache since the 

1980’s.  It is similar to the JHMCS in that imagery from a CRT is projected onto a partially reflective 

piece of glass in front of the pilot’s right eye.  This allows the pilot to view both the outside world and the 

IHADSS imagery simultaneously in the right eye.  Pilots can view symbology as well as Forward 

Looking Infrared (FLIR) imagery using the IHADSS (Behar et al, 1990). 

The potential for binocular rivalry and significant visual discomfort during extended use of the 

IHADSS was a major concern so a number of AH-64 pilots were interviewed and tested before, during, 

and after use of the IHADSS (Behar et al, 1990).  The results of the study indicated that a large 

percentage of pilots reported at least one visual complaint associated with flying an IHADSS equipped 

aircraft.  Complaints consisted of visual discomfort, headache, double vision, blurred vision, 

disorientation, and afterimages.  Of pilots complaining of visual difficulty the most common problem was 

blurred vision in right eye and/or headache.  Twenty percent of pilots reported afterimages, particularly 

after viewing FLIR imagery in the HMD after long flights.  About 70% of pilots noted that vision 
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occasionally and unintentionally alternated between their left and right eye either during or after flight.  A 

few pilots also reported “browning” or “brown outs” in the right eye following usage of the IHADSS for 

long periods of time. 

An analysis of the diopters settings, the focusing corrections set by the pilots while using the 

IHADSS, indicated that the settings were incorrectly adjusted and ranged from 0 to -5.25 diopters, with a 

mean of -2.28.  These incorrect focus settings would cause significant eyestrain and discomfort during 

extended use.  Behar et al therefore concluded that the source of the pilots’ visual complaints could 

therefore likely be attributed to incorrect focus adjustment, which could be corrected with proper training, 

rather than the occurrence of binocular rivalry.  Nevertheless, the potential for rivalry was not ruled out.  

The simultaneous viewing of the real world and FLIR imagery, particularly at night, could create 

conditions conducive to rivalry due to the significant difference in brightness, contrast, color, flicker, and 

shape of the imagery in the two eyes. 

In another study, it was concluded that transparent monocular HMDs may not be suitable for use 

under conditions where the background (OTW) scene is complex and dynamic (Laramee & Ware, 2002) 

due to the occurrence of binocular rivalry.  The drive to display more information to pilots of fixed wing 

aircraft will create similar conditions.  FLIR and other sensor imagery may find its way into devices like 

the JHMCS.  For example, the HMD to be incorporated in the JSF is being designed to display imagery 

from various sensors in addition to symbology.  It is therefore important to determine the parameters of 

the monocular HMD that minimize rivalry and visual suppression, as well as any other sources of visual 

discomfort, and establish longer periods of effective use.   

Basic Research on Binocular Rivalry 
To establish a foundation for future research on binocular rivalry a brief review of previous 

research follows.   

Binocular rivalry has been shown to occur when completely different images are displayed to the 

two eyes (see Figure 6).  For example, a grid of vertical bars shown to the left eye, and a grid of 

horizontal bars shown to the right eye will produce rivalry.  Differences of luminance and color between 

the two eyes have been shown to induce rivalry (LeVelt, 1965).  Reversed contrast imagery in the two 

eyes will also produce rivalry.  Differences in brightness may produce the appearance of a polished 

surface.  Rivalry induced by color difference is difficult to obtain and only arises in carefully controlled 

conditions.  In those cases the two different colors, presented separately to the two eyes appear to fuse 

into a color that is the mixture of the two separate colors. 
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Figure 6.  Conditions producing binocular rivalry. 

LeVelt (1965) makes a distinction between two different forms of rivalry: true interactive rivalry 

and spurious rivalry.  Interactive rivalry is the suppression of color, contour, or brightness in one eye by 

the stimulation of the other eye.  Spurious rivalry occurs when a homogenous field is presented to one eye 

and a contoured target is presented to the second eye.  The contoured target will dominate when viewed 

centrally, but will fade when viewed peripherally (despite the fact that contours generally dominate under 

these conditions).  During spurious rivalry then, fixated targets will likely maintain visibility but targets in 

the periphery may periodically fade from view.  LeVelt contends that this peripheral fading of imagery is 

not due to interactions between the two eyes but rather spontaneous fading of imagery referred to as 

Troxler’s effect.  This effect can also occur during binocular presentation.  True interactive rivalry must 

therefore involve more than a homogenous field in one eye (i.e., contour-contour rivalry, color-color 

rivalry, etc.).  Interactive rivalry and spurious rivalry may occur simultaneously however (LeVelt, 1965).  

Whether spurious or interactive, portions of presented imagery may disappear.   

If images of two different luminance levels are presented to each eye separately the resulting 

percept will be intermediate between the two luminance levels and is referred to as brightness averaging.  

If the observer closes one eye to look only at the brighter field, he/she perceives a brighter image 

compared to the perceived brightness with both eyes open.  This perceived decrease in brightness despite 

the fact that the total energy delivered to the two eyes is greater than that of the single brighter image seen 

by one eye is referred to as Fechner’s paradox.  In a series of experiments LeVelt shows how fields of 

differing luminance presented to the two eyes are weighted, and further, shows the effect of the presence 

of contours in one eye or the other on perceived brightness.  LeVelt concludes that the effect of contours 

is a local effect, concentrated near the contour (as opposed to affecting brightness perception across the 
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whole eye), and that this mechanism is what leads to alternate fading between the left and right eyes in a 

more complex scene with more extensive contours combined with eye movements.  The alternation of 

dichoptically viewed stimuli can be described by frequency and dominance.  Frequency refers to how 

often the left and right images seem to alternate to the observer, while dominance refers to the total time 

that the left and right images are visible to the observer.  Dominance and alternation have been found to 

be influenced by differences in contrast and stimulus size – or what LeVelt refers to as amount of contour 

per area.   

Yang, Rose, and Blake (1992) note that a variety of perceptual states may occur during dichoptic 

viewing.  One state is monocular dominance where the image presented to one eye is entirely visible and 

alternating with the complete image in the other eye.  A second state is a mosaic consisting of portions of 

each image presented separately to the two eyes.  A third state is the appearance of superimposed images 

that appear to be at the same depth.  Yang et al refer to this as superimposition.  A fourth state is similar 

to superimposition except that the two images appear to be at different depths and is referred to as 

transparency.  Yang et al found that monocular dominance tends to occur when the two competing images 

are of similar, and generally lower, spatial frequencies.  Superimposition was found to occur when the 

two images were of similar but higher spatial frequency.  Transparency was found to occur more often 

when the spatial frequencies of the two images were significantly different from one another and when 

one of the images had a high spatial frequency.  The spatial frequency content of the two images therefore 

influence the observer’s resulting perception.   

It has generally been assumed that binocular rivalry arises due to conflicting input from the two 

eyes.  In other words, the conflict occurs early in visual processing due to two conflicting images from the 

two eyes.  However, several researchers (Logothetis, Leopold, & Sheinberg, 1996, Kovacs, Papathomas, 

Yang, & Feher, 1996) have shown that rivalry might be thought of as two “conflicting stimuli” rather than 

“conflicting eyes”.  In other words, the conflict may occur late in visual processing, at cortical levels.  

Binocular rivalry might therefore be similar to other bistable stimuli (such as the figure or ground 

alternation).  Logothetis et al (1996) alternated rivalrous stimuli and compared dominance in this 

condition with typical static binocular stimuli.  They found that a dominant stimulus could remain 

dominant even though it had switched from the “dominant eye” to the “non-dominant” eye.  Kovacs et al 

(1996) compared typical static rivalrous stimuli with stimuli that had been broken into sections and 

swapped between left and right images.  They found that observers effectively reassembled the broken 

images presented separately to the two eyes.  Furthermore, frequency of rivalry alternation remained 

equal between the two conditions.  This could not occur if rivalry was simply the result of the suppression 

of one eye’s input over the other.  These findings imply that imagery presented separately to the two eyes 
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may be less likely to provoke rivalry if they can be thought of as forming a complete percept, for example 

if one half of a face were presented to the left eye, and the other half to the right eye, observers may 

simply meld the two without significant alternation, or competition between the two images.   

In support of this, it has been shown that neurons in the brain early in visual processing do not 

exhibit responses indicative of rivalry (alternating levels of activity).  Recordings of the activity of 

neurons farther downstream (in the cortex), however, do show evidence of alternating patterns when two 

different images are presented to the two eyes (Blake & Logothetis, 2002).   

Ocular Dominance 
Related to binocular rivalry is the concept of ocular dominance.  This refers to a person’s 

preference for input from one eye or the other.  Ocular dominance has been tested in numerous ways.  

Porac and Coren (1976) identified eight tests of dominance, which include sighting tests, unconscious 

sighting tests, binocular rivalry tests, acuity tests, motoric efficiency tests, clarity tests, perceptual 

efficiency tests, and measurements of innervation density.  Coren and Kaplan (1973) performed a factor 

analysis on data from a battery of 13 tests for ocular dominance.  The results indicate three factors to be 

most important: sighting, sensory, and acuity dominance.   

Sighting dominance: These tests seek to observe which eye is consistently favored during 

monocular viewing tasks (such as when looking through a telescope).  Many variations of this test have 

been proposed (Crider, 1944; Coren & Kaplan, 1973), some of which are designed to negate any effect of 

hand dominance by requiring participants to hold the sighting apparatus with both hands (unconscious 

sighting tests, Miles, 1929, 1930; Gronwall & Sampson, 1971).  Sighting tests are simple to perform – a 

test that your optometrist may use during an eye exam simply involves forming a triangle with two hands 

and looking through the center of the triangle at a target on the wall.  The target is then viewed alternately 

with one eye, then the other while the opposite eye is closed.  The eye that is most in line with the target 

is identified as the dominant eye.  When viewing the target through the triangle, if the dominant eye is 

closed to view the target with the other eye, the target will appear to shift to one side.  For example, if a 

person is left eye dominant and then closes the left eye to view the target centered in the triangle with the 

right eye, the target will appear to shift to the right.  This test is similar to the “hole test” described by 

Coren and Caplan (1973). 

Due to their relative simplicity, sighting tests seem to be the most common test for ocular 

dominance.  In addition, the results for sighting dominance, compared to other forms of dominance, 

appear to be the most reliable (Porac & Coren, 1976).  Right-eyed sighters have shown more consistency 

in their preference than left-eyed sighters (Friedlander, 1971; Porac & Coren, 1975).  Not only are right-

eyed sighters more consistent, but they seem to be more numerous.  Estimates from a variety of studies 
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indicate that about 60 – 70 % of the population are right-eyed sighters while 30 – 40 % tend to be left-

eyed sighters (Porac & Coren, 1976).   

Sensory dominance tests seek to observe which eye’s input is favored longest during binocular 

rivalry tasks.  This type of dominance has received far less attention than sighting dominance.  However, 

like sighting tests, binocular rivalry tests have shown a preference for the right eye (Cohen, 1952; Coren 

& Kaplan, 1973, Porac & Coren, 1976).  Some of the difficulties in this approach are that the results may 

vary depending on the size, color, contrast of the stimuli (Mapp, Ono, & Barbeito, 2003).  One method of 

testing sensory dominance was developed by Washburn, Faison, and Scott (1934).  Their method involves 

red and blue cards.  Observers view the cards through a stereoscope, such that one card is visible to the 

right eye, and the other card is visible only to the other eye.  The observers are then asked to indicate 

which color they see and when the color changes (i.e., red, blue, or purple).  The experimenter simply 

records the time for which each color is dominant.  LeVelt (1965) describes a similar method in which 

equibrightness curves are computed based on brightness matches between a test field presented to one eye 

and a separate field, which the observer can adjust, presented to the other eye.  The slope of the resulting 

function indicates eye dominance.  Behar et al (1990) used a relatively simple technique to assess eye 

dominance in which an observer viewed moving bars displayed on a monitor.  A prism was placed in 

front of one eye so the direction of motion was different for that eye.  The perceived direction of motion 

was recorded over time thus establishing eye dominance. 

Acuity measures of dominance simply involve testing each eye separately for acuity.  The eye 

with the best resolving power is identified as the dominant eye.   

Sighting tests of dominance are clearly the easiest to perform and are the most frequently 

administered.  The relative prevalence of right-eyed sighters is evident and current monocular HMDs 

such as the JHMCS are typically mounted over the right eye.  However, the various tests for ocular 

dominance are generally not correlated (Mapp, Ono, & Barbeito, 2003).  A sighting test may indicate 

right eye dominance for example, while a sensory dominance test indicates that either the left eye is 

dominant or neither eye is dominant.  Dominance identified using sensory dominance tests may even vary 

depending on the type of stimuli used (e.g., dominance evoked with contours may be different from 

dominance evoked by color).  It is therefore unclear at this point what significance measures of eye 

dominance have or whether they can predict anything about performance during the use of HMDs.   

Out-the-Window (OTW) Viewing 
We consider here the situation of using binocular HMDs for providing the OTW simulated 

imagery for flight training purposes.  This simulation can involve either a real HUD and cockpit seen 
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through a semi-transparent HMD depicting an out-the-window scene, or the HMD imagery simulating 

both a virtual HUD and an OTW scene.  In the latter case, an occluding HMD may also work, provided 

there is ample look-under clearance to view cockpit instruments. 

When simulating OTW viewing, one can use either a biocular HMD or a binocular HMD.  

Biocular HMDs present the same imagery to both eyes of a user.  Depth and distance would be conveyed 

by monocular cues such as perspective and motion parallax presented to both eyes with zero binocular 

parallax.  Binocular HMDs present similar imagery to the two eyes of the user with binocular parallax 

between the views, which is achieved by presenting each eye's view from a different eye point.  Depth 

and distance would be conveyed by monocular cues together with binocular parallax.   

Ideally an HMD designed for display of simulated imagery for OTW viewing for training 

applications would be lightweight, un-tethered, have a large field of view equal to the field of view of the 

human visual system, eye-limited spatial resolution, and full binocular overlap for depth perception.  In 

reality, however, each of these factors will trade off with one another, and the combination of all these 

characteristics is currently unachievable.  For example, current light modulators are generally limited to 

about 1280 x 1024 pixels.  If eye-limited resolution is a driving factor, the field of view is therefore 

necessarily limited to approximately 20 degrees per eye (i.e., 1 arcmin per pixel).  If field of view is the 

driving factor the weight and size of the optics becomes an important consideration.  As field of view 

increases, the weight and size of the optics required increases rapidly, while resolution decreases.  Melzer 

and Moffitt (1997) and Velger (1998) discuss these important design issues in greater depth.  Reducing 

the amount of cabling used to provide imagery and power to the HMD is also very important.  For 

example, a significant complaint in an evaluation of the CAE advanced fiber-optic helmet-mounted 

display (FOHMD) was that the thick fiber optic bundles inhibited head movement (Brown et al., 1996).  

It is not currently possible to remove the cabling entirely but it may be possible to transmit imagery via a 

thin, lightweight fiber-optic cable to reduce factors inhibiting head movements as much as possible.  

Overcoming these difficulties pose significant engineering challenges.  However, we will once again 

focus here on the perceptual issues likely to be encountered in OTW HMD applications. 

Perceptual Issues in OTW HMD Applications 

Field of View 
The field of view of an HMD is an important consideration when designing and implementing 

any given HMD system.  Field of view is important for the obvious reason that, other factors being 

constant, a larger field of view will better simulate natural viewing.  The visual field of the human visual 

system extends 200 deg horizontal by 130 deg vertical, with the central 120 deg being the area of 

binocular overlap (Velger, 1998, pp. 50).  Wide fields of view can be created with relatively large optics 
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(and therefore increasing the weight of the system) or smaller eye relief (Velger, 1998, pp. 64-65).  

However, increasing field of view typically lowers display resolution because the same pixels are mapped 

to a larger display area as field of view is increased, which therefore decreases resolution (Fisher, 1994). 

Field of view may affect perceived size and distance as well as heading performance.  These 

effects include the underestimation of size and distance in the display and impaired visual cognition 

(Osgood & Wells, 1991).  Brickner and Foyle (1990) report that heading control in a flight simulator was 

impaired when the field of view was 25 deg relative to a larger field of view of 55 deg.  

Pilots testing HMDs for OTW viewing applications invariably prefer large fields of view and one 

would generally expect that performance on a wide variety of tasks should be negatively affected with a 

restricted field of view.  However, research investigating pilot performance on various tasks has yielded 

mixed results and clear recommendations on minimum field of view for flight training applications have 

not been established.  To shed some light on the effects of field of view in HMD OTW applications a 

review of the published vision research literature on this topic follows.   

The visual system is anatomically subdivided into different visual pathways - the parvocellular 

and magnocellular pathways (Livingstone & Hubel, 1988; Schiller et al., 1990).  The parvocellular 

pathway has connections from the central retina and project mainly to areas in the visual cortex (located 

in the occipital lobe toward the back of the head) that make up the cortical ventral stream.  Areas in the 

ventral stream functionally analyze spatial pattern information.  Cells in these cortical areas have a 

sustained and sluggish response and poor temporal acuity.  Many cells in these areas respond to color 

information and they have fine spatial acuity for functionally analyzing fine detail and high spatial 

frequency information.  In general, the parvocellular pathway is thought to be involved in the functional 

analysis of spatial pattern information for the purpose of identifying objects.   

The magnocellular pathway, in contrast, has connections from the central and peripheral retina, 

and projects mainly to areas in the visual cortex that make up the cortical dorsal stream.  Areas in the 

dorsal stream functionally analyze optic flow information for heading control (Peuskens, Sunaert, 

Dupont, Van Hecke & Orban, 2001), biological motion (Grossman, Donnelly, Price, Morgan, Pickens, 

Neighbor & Blake, 2000; Grossman & Blake, 2001), and they integrate vision with action (e.g., Yabuta, 

Sawatari & Callaway, 2001; Ts'o & Roe, 1995; Van Essen & DeYoe, 1995).  Cells in these cortical areas 

have a transient response and high temporal acuity.  Cells in these areas do not respond to color 

information and they possess poor spatial acuity; they functionally analyze coarse detail and moderate or 

low spatial frequency information.  In general, the magnocellular pathway is thought to be involved in the 

functional analysis of motion information for the purpose of locating objects, determining spatial 

relations, controlling heading during locomotion, and processing spatial orientation.   
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In a recent book, Milner and Goodale (1996) make a further distinction between the two 

pathways.  They claim that the parvocellular pathway is involved only in the representation of visual 

experience while the magnocellular pathway is involved in the completely separate process of priming 

action and motor control.  This view implies that any information gleaned from research on visual 

judgments and reports would not necessarily generalize to actual sensory-motor control tasks.  Their 

claim is quite different from the typical view of the two pathways, namely that the parvocellular pathway 

is involved in the functional analysis of spatial pattern information while the magnocellular pathway is 

involved in the functional analysis of motion information.  In support of this notion, Richman, Stanfield, 

and Dyre (1998) found that heading performance differed for active control versus passive viewing.  They 

also found that heading control was differentially affected by field of view for active control versus 

passive viewing.  With a large field of view (90 degrees), observers performed a heading task with less 

error using active control.  For a small field of view (30 degrees) however, errors on the heading task 

were larger for the active control task compared to the passive viewing task. 

Turning back to the problem of employing HMDs with a restricted field of view, using a HMD 

with a restricted field of view would mean that stimulation would occur mainly in the central portion of 

the retinae of the two eyes.  Although eye movements are usually possible with a HMD, it is likely that 

the user would spend much of the time looking in the forward direction.  This, in turn, would mean that 

the parvocellular pathway, rather than the magnocellular pathway, would be predominantly activated.  

Under such conditions, an observer's ability to control heading during locomotion and to process spatial 

orientation might be compromised, as might be the sense of immersion.   

For example, Allison, Howard, and Zacher (1999) investigated the effect of the size of the field-

of-view on roll vection and illusory self-tilt in a tumbling room.  These authors found that complete 360-

degree body rotation (tumbling) and increased speed of self-rotation was perceived by most observers 

under a full field of view condition.  For smaller fields of view, tilt or partial tumbling and slower speeds 

of self-rotation were perceived.  When the field of view was 50 degrees, only about one-half of all 

observers reported tumbling at an intermediate speed.  This suggests that a field of view of at least 50 

degrees is needed for some sense of immersion, and that a very large field of view would be needed for a 

complete sense of immersion. 

Similarly, Duh, Lin, Kenyon, Parker, and Furness (2001) found that research participants’ ability 

to balance was increasingly impaired as field of view was increased.  In this experiment participants stood 

inside a 3 foot dome while a variety of scenes were projected and oscillated.  Pressure plates were used to 

monitor center of balance.  Fields of view from 30 degrees to 180 degrees were tested.  Surprisingly, 

postural stability did not plateau even at the largest field of view tested (180 degrees).  This suggests that 
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a sense of total immersion would require a very large field of view, greater than 180 degrees.  Subjective 

ratings of difficulty in maintaining postural stability did begin to plateau at approximately 120 degrees 

however.  This may provide a more attainable goal for HMD designers while still providing a sufficient 

feeling of immersion. 

Tasks requiring accurate sense of self-motion, or the positioning of an aircraft relative to other 

aircraft, such as during formation flying, may also require large fields of view.  For example, Weikhorst 

and Vacarro (1988) found that maneuvers such as the aileron and barrel roll were performed significantly 

better by pilots in a simulator with a wide field of view (300 degrees horizontally), compared to limited 

fields of view (144 degrees and 36 degrees horizontally).  They also found that accuracy in dropping 

bombs, in terms of meters to the target, improved when field of view was increased.  These authors 

further noted that the flight paths of pilots dropping bombs in the limited field of view conditions were 

significantly different from flight paths in the wide field of view condition.  Significantly reducing field 

of view might therefore have serious training implications.  In another study examining pilot performance 

in conducting realistic tactical maneuvers while field of view was varied, Dixon, Krueger, Rojas, and 

Hubbard (1989) found that increased field of view reduced the number of trials to train a low-level flight 

maneuver as well as a 30-degree manual dive-bombing task.  Based on the results, they recommended a 

minimum instantaneous field of view of 160 x 80 degrees for flight simulation training applications. 

Experiments examining field of view (Kruk & Runnings, 1989) with the CAE fiber-optic helmet 

mounted display (FOHMD) did not find statistically reliable differences in performance during various 

low altitude flight tasks as field of view was varied (127, 107, and 87 degrees).  However, the pilots all 

indicated that workload while performing maneuvers in the limited field of view conditions was 

substantially higher.  A similar finding was noted for high altitude air-to-air combat maneuvers.  

Significant differences in maneuvering time were found for formation flying as field of view was 

decreased.  Pilots in this study found it very difficult to maneuver within 6 feet wingtip to wingtip on the 

fingertip formation, and substantial pilot induced oscillation occurred in the reduced field of view 

conditions.  The authors attributed this to lack of motion cuing, as well as the reduced horizon reference 

for the reduced field of view conditions.   

Other studies examining field of view however often show a plateau at approximately 40 degrees.  

For example, in a study involving a simulated nighttime attack, Osgood and Wells (1991) examined size 

of the field of view for an aircraft-fixed sensor whose image was seen on a HUD and for a head-steered 

sensor seen on a helmet-mounted display.  With the head-steered HMD system, and for larger fields of 

view, observers acquired the targets quicker up to a field-of-view of 40 degrees, beyond which 

performance did not significantly change.  Kenyon and Kneller (1993) investigated the effect of field of 
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view on a visual tracking task and found that near-asymptotic performance was obtained with a field of 

view of only 40 degrees. 

Generally, the difference between those experiments that find that a large field of view is 

beneficial and those that find that limited fields of view (less than 60 degrees) are sufficient is the type of 

task that is examined.  Based on the hypothesis proposed above, performance of tasks primarily engaging 

the magnocellular visual processing system will benefit from a very large field of view (greater than 60 

degrees), while those tasks primarily engaging the parvocellular visual processing system can be 

performed accurately with a limited field of view (less than 60 degrees).  For example, formation flying, 

and basic combat maneuvers, such as barrel rolls, tasks that, in short, require accurate perception of self-

motion (or simulated self-motion in this case), benefit from a large field of view.  Targeting tasks, 

tracking tasks, and object recognition tasks, in contrast, are performed accurately with field of view as 

small as 40 degrees.  Additional research should be performed with visual tasks chosen using this 

framework to establish a field of view for HMD applications that can support adequate performance for 

perception of self-motion while still maintaining feasible optical size, weight, and resolution.  A concept 

that might be considered, for example, is a small field of view, high-resolution central area, with a low-

resolution wide field of view surrounding area.  This might provide the high-resolution detail necessary to 

support target identification without reducing the perception of optic flow or other cues necessary for the 

perception of self-motion. 

Interocular differences 
With binocular HMDs, the content of the imagery and scenes projected to the two eyes is usually 

different only in a way consistent with binocular parallax and rivalry usually does not ensue.  When the 

content of the synthetic scenes delivered to the two eyes is the same or very similar, binocular fusion 

results.  However, the content of imagery shown to each eye could vary considerably in practice.  For 

example, designers could present symbology to one eye while both eyes view the OTW scene, in a 

manner similar to the JHMCS.  As another example, FLIR imagery could be displayed to one eye while 

the other eye views the OTW scene.  If these types of situations can be expected it will be important to 

determine characteristics of binocularly presented imagery that reduce the occurrence of rivalry.  

Additionally, slight interocular differences in certain image characteristics, which still allow fusion to 

occur, can nonetheless cause unwanted perceptual effects.  For example, slight differences in line 

orientation between images delivered to the two eyes will create the perception of a line tilted through the 

Z-axis, as well as a cyclotorsion response (Pierce, Arrington, & Moreno, 1999).  Over a period of time, 

this could create muscle fatigue and eye strain.  Additionally, slight differences in the size of images can 

create the perception of an object rotated about the vertical axis. 
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With regard to visual tolerance for interocular differences in simulation using a binocular HMD, 

Rash, Mozo, McEntire, and Licina (1996) suggest that interocular differences in luminance of up to 30%, 

a rotational difference of up to 10 arcmin, horizontal or vertical differences in image size of up to 1.5%, 

and deviation between centers of the two displays of 0.18 prism diopters (6.12 arcmin), all should be 

acceptable. 

Convergent and divergent partial overlap displays (see Figure 7) can produce perceptual conflicts 

such as luning, which is a form of rivalry in which there is a subjective darkening of the monocular 

regions near the border with the binocular overlap region (Velger, 1998).  Luning can be minimized by 

reducing the luminance near the edges of the binocular region (Velger, 1998, pp. 56; Melzer & Moffitt, 

1991; Klymenko et al., 1994; Grigby & Tsou, 1994).  Luning may be related to interocular suppression 

affecting unpaired monocular images (called half-occlusions) which do not normally occur with occlusion 

in the real world (Nakayama & Shimojo, 1990).  With binocular viewing, unpaired images in one eye 

undergo either visual suppression or are perceived with depth depending upon whether the stimulus 

arrangement has ecological validity in terms of occlusion.  It is therefore important to determine whether 

problems with convergent versus divergent binocular displays are related to stimulus conditions that 

mimic occlusion (Nakayama & Shimojo, 1990); and whether one type of display may be better than the 

other in terms of less visual suppression in the non-overlapping portions of the field of view (see Rash, 

Mozo, McEntire, & Licina, 1996 for more discussion of luning).  Klymenko et al (2001) found that 

convergent overlap reduced reaction times in a visual search task compared to divergent partial overlap.  

However, they also found that reaction times were significantly lower in the full overlap condition 

compared to either the divergent or convergent partial overlap conditions. 
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Figure 7.  Binocular overlap conditions. 

It will be important to determine how much binocular overlap is needed and assess its importance 

relative to field-of-view (field-of-view would necessarily have to be reduced to increase binocular 

overlap).  For tasks where depth perception is particularly important, (e.g., a helicopter landing 

simulation), greater binocular overlap may be required and the subsequent reduction in field-of-view 

justified.  Kruk and Longridge (1984) found that binocular presentation improved target detection for 

observers using the FOHMD compared to monocular presentation.  However, they also found that target 

detection was degraded for targets located in a 5-degree lateral edge of the binocular overlap regions of 

the display (for both a 25 and 45 degree overlap).  Because a greater percentage of the central viewing 

area would be subject to this reduced detection level for the smaller 25 degree overlap Kruk and 

Longridge recommended that an overlap greater than 25 degrees for subsequent HMD systems.  Grigsby 

and Tsou (1994) state that binocular processing breaks down outside a 40-degree central visual region, so 

a central binocular overlap region of 40 degrees may be sufficient for many tasks if the observer is 

generally looking at the center of the displays.  Furthermore, a 40-degree area overlap ensures that, for all 

but the largest eye movements, the fovea will remain inside the overlap area.  Continuously crossing that 

boundary, and breaking and re-establishing binocular fusion, would likely result in fatigue during 

extended use (Grigsby & Tsou, 1990). 

Although luning has been shown to affect performance for relatively simple static imagery it may 

be that the effect is less noticeable for more complex dynamic imagery.  The complexity involved with 

designing a device with adjustable binocular overlap and vergence angle makes research into this issue 

difficult.  However, additional research into this issue will be important to ensure important information is 
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not missed by an observer and how adjustments to combat luning may affect other factors such as field of 

view and eyestrain (see accommodation/vergence section below). 

Accommodation/Vergence 
For OTW viewing simulations, the display brightness and contrast should be sufficient for 

simulating the viewing of the outside world.  The display brightness and contrast should be sufficient so 

as to minimize the tendency for accommodation to drift toward dark focus and at the same time produce a 

relatively large depth of focus so that images appear sharp and in focus despite the tendency to verge in a 

depth plane different from the display screen.   

When simulating OTW viewing using a binocular HMD, the stimulus to accommodation would 

be the imagery of the HMD.  However, when the user changes his or her vergence angle to view 

binocularly a virtual target in the synthetic scene, the vergence angle can be mismatched relative to 

accommodative demand.  Recall that there are three possible effects of accommodation-vergence 

mismatch: (1) eye strain or visual discomfort; (2) blurring of imagery (depending upon stimulus 

brightness and contrast); and (3) misperceived size, depth, speed, and/or distance via the operation of 

perceptual constancies (Patterson & Martin, 1992).  For example, Edgar, Pope, and Craig (1993) reported 

that observers tended to misaccommodate to virtual displays and may misperceive size and distance of 

objects, and Ellis, Bucher, and Menges (1995) reported that errors of judged depth of virtual objects are 

associated with variation in binocular vergence.   

Lampton, Gildea, McDonald, and Kolasinski (1996) compared performance on several tasks 

while users viewed imagery through several different display types.  One of the tasks they used was a 

distance estimation task.  Distance estimates for a stationary object located 40 feet from the observer were 

compared for a binocular HMD, a standard computer monitor, and a boom mounted display.  Real world 

performance was also assessed.  Median responses for estimates while using the HMD were similar to the 

other conditions.  However, the range of responses while using the HMD was substantially larger 

compared to the other display types and to the real world condition.  Responses ranged from 6 feet to 300 

feet.  These results indicate that individual differences in distance scaling may indeed be substantial while 

using some HMDs.  Judgments of size, speed, and depth may therefore also be affected.   

A variety of configurations can be adopted for binocular HMDs.  The vergence angle can be set 

so that: (a) the observer’s eyes look straight ahead, (b) vergence angle is equal in depth relative to 

accommodative demand, or (c) vergence angle is set such that gaze angle overlaps (i.e., vergence 

condition similar to that of looking at a very near object) while accommodation may be at a greater 

distance.  Figure 8 illustrates these conditions.  Ideally, the configuration should be set in order to 

minimize eyestrain.  Shibata (2002) found that eyestrain was least when vergence angle and 
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accommodative demand were matched in terms of distance.  However, compromises may again need to 

be made in establishing accommodative and vergence configurations.  Recall that Klymenko et al. (2001) 

found that a convergent configuration reduced the effects of luning to some extent in a visual search task.  

Furthermore, it may also be useful to consider dark accommodation when selecting focal length of the 

HMD optics. 

Image
Plane

Accommodation
Distance

Convergence
Distance 200 ft

10 ft

10 ft

10 ft

3 ft

10 ft

A. B. C.
 

Figure 8.  Accommodation and vergence conditions. 

Head tracking lag 
There are two perceptual frames of reference relevant to the discussion of HMDs: (1) 

environment-centered frame of reference (where the projection system is linked to the external world in 

terms of ambient light reflected off natural objects and surfaces); and (2) head-centered frame of 

reference (where the projection system is linked to the observer’s head).   

With an environment-centered frame of reference (i.e., viewing the world naturally), changes in 

eye or head position alter the pattern of retinal stimulation.  With a head-centered perceptual frame of 

reference (i.e., viewing scenes projected on a helmet-mounted display), changes in eye position alter 

retinal stimulation but changes in head position do not.  Changes in retinal stimulation that naturally 

accompany changes in head position must be simulated by computer and projected onto the HMD.  For 

example, in the case of OTW viewing, the image on the display would be shifted with the same 

magnitude and in a direction opposite to the head motion.  The shift of the visual scene would occur in a 

direction opposite to the head motion to mimic the shift in imagery that would occur within an 

environment-centered frame of reference.   
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Involuntary head movements occur when mission training or rehearsal occurs within an 

environment involving acceleration and/or vibration.  In this case, involuntary head movements elicit a 

reflexive eye movement called the vestibulo-ocular reflex (VOR).  The VOR entails involuntary eye 

movements which compensate for (i.e., are in a direction opposite to) the involuntary head movements so 

that fixation is maintained and the image is stabilized on the retina.  For instance, if an individual's head 

vibrates upwards, the retinal image would slip downward, and the VOR would elicit a compensatory 

downward eye movement to maintain fixation on the object during the head movement.  In an 

environment-centered frame of reference (real world), such a compensatory eye movement system is 

important for maintaining fixation on objects during locomotion (Benson & Barnes, 1978; Velger, 1998, 

pp. 207).  Significant vibration would not be expected in most flight training environments, however, in 

shipboard training situations, such as on an aircraft carrier, involuntary head movements might be more of 

a concern.   

With HMDs, which involve a head-centered frame of reference, compensatory eye movements 

(VOR) disrupt vision because, during the involuntary head movement produced by vibration, the retinal 

image moves with the head.  The compensatory eye movements are inappropriate because they occur in a 

situation where head vibrations do not cause the retinal image to move (Lee & King, 1971; Velger, 1998, 

pp. 208, 232).  This head vibration will cause visual performance to decline.  For instance, acuity 

decrements and errors in aiming increase by a factor of 10 during head vibration (from an accuracy of 0.1 

deg without head vibration to 1.0-1.5 deg with head vibration).  The worst performance occurs at a 

frequency range of 3.2-5 Hz (Velger, 1998, pp. 216; Wells & Griffin, 1987, 1988).  Below 1 Hz, users 

can make smooth pursuit eye movements to compensate (Huddleston, 1970; Velger, 1998, pp. 216).   

One remedy for an inappropriate VOR response while wearing a HMD is to measure the 

involuntary head movements with a head tracker and shift the image on the display with the same 

magnitude, but in a direction opposite to the head movement (and in the same direction as the VOR).  

This method attempts to stabilize the retinal image and mimic viewing within an environment-centered 

frame of reference (Velger, 1998, pp. 225; Young, 1976).  Because most head motions occur within the 

range of 2-10 Hz, the head-position measurement computations should be carried out at a rate of 120-240 

Hz (Velger, 1998, pp. 227, 232; see Ljung, Morf, & Falconer, 1978; Merhav & Velger, 1991).  However, 

this method is relatively inaccurate and may not always be capable of distinguishing voluntary head 

movements from involuntary head movements (Velger, 1998, pp. 224; Wells & Griffin, 1984, 1987). 

Accurate measurement of head position is challenging because head movements may exceed 

angular velocities of several hundreds deg/sec and accelerations of up to several thousand deg/sec2 (Wells 

& Haas, 1990).  However, these values are at the extreme end of head movement velocities and 
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accelerations.  For example, Rash et al.  (1998) found that 97% of all head movements of AH-64 pilots 

were between 0 and 120 deg/sec.  When measuring head movements, one important issue is the temporal 

delay and/or lag between actual head position and update of the displayed imagery (i.e., rendering 

latency).  So & Griffin (1992) found that lags on the order of 80-100 msec between head movements and 

corresponding shift of displayed imagery produced sensory conflict between proprioception and visual 

information.  This degree of temporal delay or lag can produce perceptual confusion, nausea, and 

disorientation when viewing a simulated out-the-window view (So & Griffin, 1992; Velger, 1998, pp. 

145, 171).  With sufficiently long temporal lags, the user's perception of anticipated flight path and 

vehicle yaw rate become impaired (Grunwald & Kohn, 1994).  Moreover, Jagacinski and Flach (2003) 

note that phase lags set up a stability limit on the forward loop gain of a control system, with larger time 

delays producing decreasing range of gains that will yield stable control. 

With long time delays, there may be no stable gain that produces a rapid head-tracker response 

and a proportional control system may not work (pp. 99).  According to Keller and Colucci (1998), the 

lag between the image displayed and actual head orientation/position/location can be the greatest obstacle 

in creating effective HMDs.  They recommended that for see-through augmented reality HMDs and 

targeting applications, the lag should be no greater than 16 msec.  Padmos and Milders (1992) suggest 

that for immersive displays, the latency of update should be less than 40 msec.  To achieve these values, 

one may need to increase the sampling rate or computation rate of head position, use a prediction 

algorithm to predict head position at some future point in time, or use auxiliary acceleration 

measurements (e.g., accelerometers or gyroscopes mounted on a helmet; Velger, 1998, pp. 172; Merhav 

& Velger, 1991).  Olano, Cohen, Mine, and Bishop (1995) discussed techniques for combating rendering 

latency by making the rendering latency equal one NTSC field (1 video frame, or 16.7 msec for a typical 

60 Hz frame rate) and by rendering the pixels in a scanned display based on position in the scan.   

During head movements, users typically move their eyes as well as their heads such that the eye 

movement leads the head movement and there is an angular offset between eye orientation and head 

orientation (Velger, 1998, pp. 173; Robinson, Koth, & Ringenbach, 1976).  Thus, more accurate 

measurements of line of sight are available when eye movements are measured as well as head 

movements (Velger, 1998, pp. 173).  Some current eye trackers may operate at the speeds and accuracies 

required for an eye-tracked HMD.  In a survey of current eye tracking technology (Latham, 2004) several 

eye tracker models were identified with accuracy of 0.5 degrees or less and a measurement delay less than 

16 msec.  However, many of these eye trackers were not suitable for use in combination with an HMD.  

Of the 11 eye-tracking manufacturers surveyed, only one was identified as having current eye tracking 

technology suitable for use in combination with an HMD.  Two additional companies stated that HMD 
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compatibility could be achieved with some modification.  The ability to integrate eye tracking with an 

HMD depends on the design of the HMD.  For some HMD designs, it may not be possible to mount a 

sensor or light source in the correct position necessary for measuring eye movements.  For purposes of 

simulating an environmental frame of reference with a head-centered frame of reference, the 

measurement of eye movements is not necessary because in both cases the pattern of retinal stimulation 

would change with an eye movement.  Eye tracking may be useful for reducing image generator 

requirements through the use of an eye tracked high-resolution inset within a lower resolution background 

image.  Reduction of IG requirements will be a significant issue for high-resolution displays, particularly 

when portability is a major concern.  Latham (2004) determined that an electronically slewed inset using 

current eye tracking technology provided a feasible solution to reducing IG requirements.  However, 

previous implementations of eye-tracked insets (mechanical rather than electronic) were generally not 

perceived to have been satisfactory (although an evaluation by Peters & Turner, 1992 indicated 

otherwise). 

CURRENT HMD TECHNOLOGY 
A large number of HMD products are currently on the market that range in price from hundreds 

of dollars to tens of thousands of dollars.  Monocular HMDs, which are significantly less complex in 

comparison to binocular HMDs, cost substantially less than binocular HMDs.  Table 1 below provides a 

list of a number of currently available HMDs, their manufacturers, as well as some specifications and 

pricing.  This is not a complete list and a number of other manufacturers such as Sony, Canon, Olympus, 

etc. also make HMDs.  A more complete list of HMDs, which includes both currently available devices 

and discontinued items, is maintained by Stereo3D at http://www.stereo3d.com/hmd.htm#chart.  HMDs 

developed specifically for use in aircraft, such as the JHMCS (Vision Systems International) are also not 

listed here.  These systems typically require specialized equipment and would require significant 

modification for use in simulation and training applications.  The products that are listed require only 

standard VGA or DVI inputs and are therefore compatible with PC-based image generators (PC-IGs) 

commonly used for simulation. 
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Table 1.  Commercially available Head-mounted displays in 2005. (All photos used with permission.) 

Photo Model Manufacturer Type FOV Display Type & 
Pixel Format List Price

ProView SR80 Kaiser Electro-
Optics

Binocular, 
Occluding

63 degrees 
(H)/100% overlap FLCoS, SXGA $27,000 

ProView SR100 Kaiser Electro-
Optics

Binocular, Non-
occluding (25% 
transmissive)

100 degrees (H) FLCoS, SXGA $67,000 

ProView SO35 Kaiser Electro-
Optics

Monocular, 
Occluding 28 degrees (H) OLED, SVGA $8500/$9500

Advanced HMD L3Communications
Binocular, Non-
occluding (60% 
transmissive)

100 degrees (H)/ 
30 degree overlap FLCoS, SXGA NA

LiteEye 400 LiteEye Monocular, 
Occluding 38 degrees OLED, SVGA $1,599 

LiteEye 500 LiteEye
Monocular, 

Occluding or Non-
Occluding

28 degrees OLED, SVGA $2,895 

SV-6 MicroOptical Monocular, Non-
occluding 16 degrees (H) LCD, VGA $1,995 

Nomad ND2500 Microvision Monocular, Non-
occluding 23 degrees (H) Laser, SVGA $6,000 

nVisor SX NVIS Binocular, 
Occluding

60 degree 
(diagonal)/100% 

overlap
FLCoS, SXGA $23,900 

nVisor ST NVIS
Binocular, Non-
Occluding (50% 

transmissive)

50 degree 
(diagonal)/100% 

overlap
FLCoS, SXGA $34,900 

DataVisor80 nVision Binocular, 
Occluding

120 degrees 
(H)/50% overlap

CRT, VGA or 
SXGA NA

DataVisor nVision
Binocular, 

Occluding or Non-
occluding

78 degrees (H) 
w/50% overlap; 52 
degrees w/100% 

overlap

CRT, VGA or 
SXGA NA

Commercially available Head-mounted Displays (2005)

 

SUMMARY OF HMD CHARACTERISTICS 
Table 2 below provides a summary of specifications for a monocular HMD integrated with the 

AFRL M2DART for OBS training applications.  Table 3 below provides a summary of specifications for 
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a binocular HMD for deployable OTW training applications.  These specifications are, wherever possible, 

based on the published literature related to perceptual issues and human factors research on HMDs.  

HMD characteristics of interest are listed in column 1 of each table.  Minimum and desirable 

specifications are given in columns 2 and 3, respectively.  The desired specifications do not necessarily 

reflect current engineering limitations for each of the characteristics listed but provide goals for 

technology development for HMDs.  Minimum requirements are also quite stringent.  However, many 

currently available, state-of-the-art HMDs approach the specifications listed in this column.  These 

represent shorter-term goals for HMDs for the listed requirements.  The final two columns of each table 

note whether each listed specification has been clearly established and whether additional technology 

development is needed to meet it.  Additional advances in technology are required, for example, before a 

field of view matching that of the human visual system and a resolution of 1 arcmin/pixel can be 

achieved.  Additional perceptual/human factors research may be needed to better define specifications 

that are noted as not clearly established.   

Table 2.  Specifications for monocular OBS HMD applications. 

Characteristic Desired Specification Acceptable Specification Clearly Established Criteria Technology Development 
Required

Accommodative demand 
(focus distance)

Match to average distance (in 
diopters) of display screen: 

0.905 diopters for M2DART(1)

Distance in diopters +/- 0.1 
diopters Yes No

Ocular luminance difference Isoluminance in left and right 
eyes

10-25% difference between left 
and right eye(2) Yes No

HMD scene content Unknown
Minimize occurrence of 

binocular rivalry‡ No Unknown

Display luminance 70 fL* 30 fL** Yes No

Display Black Level 0.001 fL† 0.1 fL†† Yes Yes

Resolution Application dependent Match to deployed equipment 
for training purposes N/A N/A

Field of View Application dependent Match to deployed equipment 
for training purposes N/A N/A

Monocular OBS HMD

1 Winterbottom, Patterson, Pierce, Covas, & Winner (2005); 2 Self (1986)

‡It is unknown at this time the extent to which rivalry occurs for these conditions or how specifically to mitigate against rivalry, however Hershberger & Guerin 
(1975) showed that ambient scene complexity, HMD resolution, HMD luminance, HMD accommodation distance, and ambient scene luminance were significant 
factors; * Expected M2DART maximum luminance with Laser Display; ** M2DART maximum luminance with CRT displays; † Approximate CRT black level; 
††Minimum expected OTW scene luminance  
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Table 3.  Specifications for binocular OTW HMD applications. 

Characteristic Desired Specification Minimum Specification Clearly Established Criteria Technology Development 
Required

Display Pixel Hold Time < 1 msec* < 8 msec** No Yes

Display Color Breakup < 0.3 msec pulse duration*** < 2.7 msec pulse duration**** No Yes

Refresh Rate/Update Rate 120 Hz†(?) 60 Hz†† No Yes

Field of view (flight 
simulation/motion control) 200 degrees ⁫⁫⁫ 127 degrees(1) No Yes

Resolution 1 arcmin/pixel ⁫⁫⁫ ⁫ 2.25 arcmin/pixel‡ Yes Yes

Transmissivity 60% 50% No No

Vertical Misalignment 2 arcmin(2) 5 arcmin(2) Yes ⁮ No

Horizontal Misalignment
0 divergence, 3.4 arcminutes 

convergence(2)
3.4 arcminute divergence, 8.6 

arcminutes convergence(2) Yes ⁮ No

Rotational Misalignment 0 3.4 arcminutes(2) Yes ⁮ No

Binocluar overlap 40 degrees(3) > 25 degrees(4) No Yes

Vergence/Accommodation 
imbalance

Accommodation matched to 
vergence angle(5) +/- 0.1 diopters(6) No No

Eye Relief 50 mm 25 mm(2) Yes Yes

Exit Pupil 15 mm 10 mm(2) Yes Yes

System Lag                      (head 
tracker + IG) < 16 msec(7) < 16 msec(7) No Yes

Weight/ center gravity (cg) 
(including helmet or headband)

< 3 lbs with cg < 2 inches in 
front of y-axis of head8

< 4 lbs with cg < 2 inches in 
front of y-axis of head8 No Yes

1Kruk & Runnings (1989); 2Self (1986); 3Grigsby & Tsou (1994); 4Kruk & Longridge (1984); 5Shibata (2002); 6Yeh and Silverstein (1990); 7Keller and Colucci 
(1998); 8Melzer & Moffitt (1997)

*untested but based in part on data of Winterbottom et al (2004) may reduce motion blur by roughly 90%; **untested but based on data of Winterbottom et al 
(2004) may reduce motion blur by roughly 50%; ***untested but based on equation provided by Post et al (1998) should prevent noticable color break-up for 
speeds up to approximately 160 degrees/sec; ****untested but based on equation provided by Post et al (1998) should prevent noticable color break-up for 
speeds up to  approximately 7 degrees/sec; †Partly an IG requirement, however refresh rate should match update rate (Lindholm & Martin, 1993); ††Current 
display refresh/update rate, display refresh rate should match IG update rate (Lindholm & Martin, 1993); ⁫ Matching field of view of human visual system; ⁫ ⁫ Air 
Combat Command requirement; ‡HDTV resolution assuming current M2DART field of view; ⁮ However, may be based on optical systems other than HMDs (e.g. 
binoculars)

Binocular HMD

 

In our view, both significant technology advances and additional perceptual research are needed, 

to develop an HMD for deployable, full field of view, OTW training applications.  Although HMDs are 

one approach to developing a deployable OTW display for advanced aircraft simulation and training 

systems, user acceptance will be a critical hurdle and may depend on meeting all of the specifications 
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listed in the table, rather than just a few.  Developing solutions to the limitations in current HMDs will 

require a solid understanding of many of the perceptual issues described in this report, as well as 

continued technology development in many of the areas described here and summarized in Tables 2 and 

3. 

FUTURE RESEARCH 
In addition to several technology issues that are in need of further development (reduction of 

motion artifacts in digital displays, decreasing color break-up in field sequential displays, increasing 

display resolution, increasing field of view for near to eye applications, and decreasing head-tracking lag), 

there are also several perceptual issues that need to be resolved when attempting to simulate off-bore 

sighting or OTW viewing.  These issues are the following: 

(1) Binocular Rivalry.  In simulating off-bore sighting, one eye views the HMD imagery and the 

simulator imagery combined while the other eye views simulator scenery alone.  In this case, the 

existence of interocular differences in stimulus characteristics may produce binocular rivalry.  It is 

important to determine whether rivalry occurs under these viewing conditions and, if so, determine what 

stimulus characteristics may reduce its occurrence.  In simulating OTW viewing, the two eyes will view a 

binocular HMD that depicts an out-the-window scene of an ongoing mission.  In this case, the existence 

of small, unintended interocular differences in stimulus characteristics may occur due to imprecision of 

mounting and alignment, which may produce rivalry or other unwanted perceptual effects.  For example, 

it is known that small interocular differences in stimulus size can produce the perception of stereoscopic 

slant (Ogle, 1952).  Additionally, it may be desirable to simulate both OTW viewing conditions and 

JHMCS type symbology using a binocular HMD.  In this case, interocular differences conducive to 

rivalry may also be produced.  It is therefore important to determine which interocular differences 

produce rivalry or other unwanted effects and whether training or practice can help mitigate such effects 

(for example see Rash, Mozo, McEntire and Licina, 1996 for a discussion of limits of interocular 

tolerance).   

(2) Accommodation-Vergence Mismatch.  When simulating off-bore sighting with a monocular 

HMD worn in a flight simulator, or simulating OTW viewing with a binocular HMD, the stimulus to 

accommodation will be the imagery of the HMD and/or display screen of the simulator.  However, when 

the user changes his or her vergence angle to binocularly view a virtual target in the synthetic scene, the 

vergence angle can be mismatched relative to accommodative demand.  There are three potential effects 

of accommodation-vergence mismatch: (1) eye strain or visual discomfort; (2) blurring of imagery 

(depending upon display brightness and contrast); and (3) misperceived size, depth, speed, and/or 
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distance via the operation of perceptual constancy.  The effects of accommodation/vergence mismatch on 

visual discomfort, blurring of imagery, and perceived size, depth, speed and distance should be examined.   

(3) Field of view.  For simulating both off-bore sighting and OTW viewing, field of view can 

affect perception (e.g., perceived size, distance) as well as performance.  This is because, in part, field of 

view determines the relative amount of stimulation of the parvocellular visual pathway (shape, fine spatial 

acuity, color perception) versus the magnocellular pathway (motion processing, location information).  It 

is important to determine what size of field of view is needed and how that size will affect other important 

factors such as binocular overlap and resolution. 

(4) Binocular overlap and convergent versus divergent displays.  In simulating OTW viewing, it 

is important to determine the perceptual implications of using either convergent or divergent binocular 

displays.  In particular, one should determine how the convergent versus divergent systems relate to half-

occlusions, visual suppression, luning, and field of view, and whether one type of display is better than 

the other in terms of less luning or whether a full-overlap display should be considered.  See Rash, Mozo, 

McEntire, and Licina (1996) for discussion of luning.  However, it may be more important to match 

accommodative demand with vergence to reduce eyestrain (Shibata, 2002).  For extended viewing 

conditions such as those encountered during simulation and training exercises, it will be important to 

reduce eyestrain and fatigue as much as possible. 

(5) Head tracking of voluntary head movements.  In simulating an out-the-window view, the 

display imagery must be shifted in a direction opposite to voluntary head and pursuit eye movements to 

mimic an environment-centered frame of reference.  One problem is that the time required to measure the 

head movements with the head tracking system and update the display creates a temporal lag that impairs 

perception and cognition and also places constraints on the gain of the head tracking system (which 

potentially decreases the usefulness of the head tracker for measuring large voluntary head movements).  

It is therefore important to investigate the relationships among head-tracking accuracy, lag, and size of 

head movement so as to determine an acceptable set of parameters.   

(6) Head tracking of involuntary head movements.  If mission training or rehearsal utilizing an 

HMD is conducted in an environment that causes acceleration or vibration, the head will execute 

involuntary head movements that, in turn, elicit a compensatory and opposite VOR eye movement.  The 

VOR eye movement impairs viewing of the HMD because the image moves with the head, which renders 

the VOR response as inappropriate.  One approach for correcting inappropriate VOR responses while 

wearing an HMD is to measure the involuntary head movements with a head tracker and shift the image 

on the HMD by the same magnitude and a direction opposite to the head movement (and in the same 

direction as the eye movement).  However, a difficulty with this technique is that the head tracker may 
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not be accurate enough to fully compensate for the VOR response.  It is therefore important to determine 

to what degree HMDs will be used for mission training and rehearsal in environments involving 

acceleration or vibration.  If those conditions are anticipated, then the relationships among head-tracking 

accuracy, lag, and size of head movement should be investigated so as to determine whether small 

(involuntary) head movements can be measured with an acceptable degree of accuracy and lag. 
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APPENDIX 
 

ACC Air Combat Command 
AFRL Air Force Research Laboratory 
AMLCD Active matrix liquid crystal displays 
ATD Advanced Technology Demonstration 
CODS Conjugate Optical Display System 
CRT Cathode Ray Tube 
DLP Digital Light Processing 
DMD Digital Micro-Mirror Display  
DMO Distributed Mission Operations 
DOF Degrees of Freedom 
FLCoS Ferro-Electric Liquid Crystal on Silicon 
FLIR Forward Looking Infrared 
FOV Field of View 
GLV Grating Light Valve 
HMD Head-Mounted Display 
HMPD Head-Mounted Projection Display 
HUD Head-Up Display 
IHADSS Integrated Helmet and Display Sighting System 
JHMCS Joint Helmet Mounted Cueing System 
LCoS Liquid Crystal on Silicon 
LED Light Emitting Diode 
M2DART Mobile Modular Display For Advanced Research And Training 
OBS Off-Bore Sight 
MEMS Micro-Electro-Mechanical System 
OLED Organic-Light-Emitting-Diode 
OTW Out the Window 
PDA Personal Digital Assistant 
VOR Vestibulo-Ocular Reflex 
VRD Virtual Retinal Displays 

 
 

 




